Name____________________________________
APCS A (Lab Exercises – 3.7)
Finding Maximum and Minimum Values
A common task that must be done in a loop is to find the maximum and minimum of a sequence of values. The file Temps.java contains a program that reads in a sequence of hourly temperature readings over a 24-hour period. You will be adding code to this program to find the maximum and minimum temperatures. Do the following:

1.
Save the file to your directory, open it and see what’s there. Note that a for loop is used since we need a count-controlled loop. Your first task is to add code to find the maximum temperature read in. In general, to find the maximum of a sequence of values processed in a loop you need to do two things:

· You need a variable that will keep track of the maximum of the values processed so far. This variable must be initialized before the loop. There are two standard techniques for initialization: one is to initialize the variable to some value smaller than any possible value being processed; another is to initialize the variable to the first value processed. In either case, after the first value is processed the maximum variable should contain the first value. For the temperature program declare a variable maxTemp to hold the maximum temperature. Initialize it to -1000 (a value less than any legitimate temperature).

· The maximum variable must be updated each time through the loop. This is done by comparing the maximum to the current value being processed. If the current value is larger, then the current value is the new maximum. So, in the temperature program, add an if statement inside the loop to compare the current temperature read in to maxTemp. If the current temperature is larger set maxTemp to that temperature. NOTE: If the current temperature is NOT larger, DO NOTHING!

2.
Add code to print out the maximum after the loop. Test your program to make sure it is correct. Be sure to test it on at least three scenarios: the first number read in is the maximum, the last number read in is the maximum, and the maximum occurs somewhere in the middle of the list. For testing purposes you may want to change the HOURS_PER_DAY variable to something smaller than 24 so you don’t have to type in so many numbers!

3.
Often we want to keep track of more than just the maximum. For example, if we are finding the maximum of a sequence of test grades we might want to know the name of the student with the maximum grade. Suppose for the temperatures we want to keep track of the time (hour) the maximum temperature occurred. To do this we need to save the current value of the hour variable when we update the maxTemp variable. This of course requires a new variable to store the time (hour) that the maximum occurs. Declare timeOfMax (type int) to keep track of the time (hour) the maximum temperature occurred. Modify your if statement so that in addition to updating maxTemp you also save the value of hour in the timeOfMax variable. (WARNING: you are now doing TWO things when the if condition is TRUE.)

4.
Add code to print out the time the maximum temperature occurred along with the maximum.

5.
Finally, add code to find the minimum temperature and the time that temperature occurs. The idea is the same as for the maximum. NOTE: Use a separate if when updating the minimum temperature variable (that is, don't add an else clause to the if that is already there).
// **

// Temps.java

//

// This program reads in a sequence of hourly temperature

// readings (beginning with midnight) and prints the maximum

// temperature (along with the hour, on a 24-hour clock, it

// occurred) and the minimum temperature (along with the hour

// it occurred).

// **

import java.util.Scanner;

public class Temps

{

//--

// Reads in a sequence of temperatures and finds the

// maximum and minimum read in.

//--

public static void main (String[] args)

{

final int HOURS_PER_DAY = 24;

int temp; // a temperature reading

Scanner scan = new Scanner(System.in);

// print program heading

System.out.println ();

System.out.println ("Temperature Readings for 24 Hour" + " Period");

System.out.println ();

for (int hour = 0; hour < HOURS_PER_DAY; hour++)

{

System.out.print ("Enter the temperature reading at " + hour + " hours: ");

temp = scan.nextInt();

}

// Print the results

}

}

Counting Characters
The file Count.java contains the skeleton of a program to read in a string (a sentence or phrase) and count the number of blank spaces in the string. The program currently has the declarations and initializations and prints the results. All it needs is a loop to go through the string character by character and count (update the countBlank variable) the characters that are the blank space. Since we know how many characters there are (the length of the string) we use a count controlled loop—for loops are especially well-suited for this.

1.
Add the for loop to the program. Inside the for loop you need to access each individual character—the charAt method of the String class lets you do that. The assignment statement

 ch = phrase.charAt(i);

assigns the variable ch (type char) the character that is in index i of the String phrase. In your for loop you can use an assignment similar to this (replace i with your loop control variable if you use something other than i). NOTE: You could also directly use phrase.charAt(i) in your if (without assigning it to a variable).

2.
Test your program on several phrases to make sure it is correct.

3.
Now modify the program so that it will count several different characters, not just blank spaces. To keep things relatively simple we'll count the a’s, e’s, s’s, and t’s (both upper and lower case) in the string. You need to declare and initialize four additional counting variables (e.g. countA and so on). Your current if could be modified to cascade but another solution is to use a switch statement. Replace the current if with a switch that accounts for the 9 cases we want to count (upper and lower case a, e, s, t, and blank spaces). The cases will be based on the value of the ch variable. The switch starts as follows—complete it.

 switch (ch)

 {

 case 'a':

 case 'A': countA++;

 break;

 case

 }

Note that this switch uses the “fall through” feature of switch statements. If ch is an ‘a’ the first case matches and the switch continues execution until it encounters the break hence the countA variable would be incremented.

4.
Add statements to print out all of the counts.

5.
It would be nice to have the program let the user keep entering phrases rather than having to restart it every time. To do this we need another loop surrounding the current code. That is, the current loop will be nested inside the new loop. Add an outer while loop that will continue to execute as long as the user does NOT enter the phrase quit. Modify the prompt to tell the user to enter a phrase or quit to quit. Note that all of the initializations for the counts should be inside the while loop (that is we want the counts to start over for each new phrase entered by the user). All you need to do is add the while statement (and think about placement of your reads so the loop works correctly). Be sure to go through the program and properly indent after adding code—with nested loops the inner loop should be indented.

// **

// Count.java

//

// This program reads in strings (phrases) and counts the

// number of blank characters and certain other letters

// in the phrase.

// **

import java.util.Scanner;

public class Count

{

public static void main (String[] args)

{

String phrase; // a string of characters

int countBlank; // the number of blanks in the phrase

int length; // the length of the phrase

char ch; // an individual character in the string

Scanner scan = new Scanner(System.in);

// Print a program header

System.out.println ();

System.out.println ("Character Counter");

System.out.println ();

// Read in a string and find its length

System.out.print ("Enter a sentence or phrase: ");

phrase = scan.nextLine();

length = phrase.length();

// Initialize counts

countBlank = 0;

// a for loop to go through the string char by char

// and count the blank spaces

// Print the results

System.out.println ();

System.out.println ("Number of blank spaces: " + countBlank);

System.out.println ();

}

}

