Base Conversions

- 1. Decimal (base 10) Use the divide by base system to convert)
- 2. Binary (base 2)
- 3. Octal (base 8)
 - a. Convert to Binary is a 3 to 1 relationship
 - b. Convert to Hex is the two-step process (convert to binary then to Hex)
- 4. Hexadecimal (base 16)
 - a. Convert to Binary is a 4 to 1 relationship
 - b. Convert to Octal is the two-step process (convert to binary then to Octal)
- 5. Remember...if you have to do addition or subtraction, convert to decimal first.

Chapter 1

- 1. Reserved words special purpose (all lowercase)
- 2. White space ignored by computer, used just so humans can read the code
- 3. Comments used to explain the code
 - a. Line comments use //
 - b. Multi-line comments use /* at beginning and */ at the end
- 4. Identifier rules identifiers are names for variables, methods, and classes
 - a. Can't start with a digit (0-9)
 - b. Can only use \$ and characters
 - c. Classes use a uppercase first letter
 - d. Constants are all uppercase
 - e. Use title case (qtyOnHand)
- 5. Errors
 - a. Compile errors syntax errors
 - b. Run-time errors occur at run time
 - i. Best example is a divide by zero error
 - Logic errors most difficult to detect and fix. You have to test your results to discover and correct.
- 6. Program development know the steps. Understand that the step which is implementation (coding) is the <u>least</u> creative.

Your Notes

Chapter 2

- 1. Now the escape sequences (must start with a \)
 - a. Understand they have to be inside a string literal
- 2. Data types (objects & primitive)
- 3. Primitive types include:
 - a. int integers
 - b. double values with a decimal point
 - c. booleans valid values are only true and false
 - d. char character literal (must be inside single quotation marks 'a'
- 4. There are three types of data conversions
 - a. Assignment conversion: (double num = 3; a widening occurs)
 - b. Arithmetic promotion: (5 / 3.0; since one of the operands is a double, the answer is rendered as a double. Again, a widening conversion occurs)
 - c. <u>Casting</u> is when you put type you want to apply in parentheses. This can be done with widening and narrowing so it is powerful and dangerous!
 - d. Know the difference between narrowing and widening conversions
- 5. The methods of the String class:
 - a. Know all the methods that are listed on page 84
 - b. substring()
 - c. length()
 - d. indexOf()
 - e. compareTo()
 - f. equals()
- 6. The methods of the Math class:
 - a. Know that these methods are static meaning that you call them by using the class name and not an object
 - b. random() method please know how to use the random method to pull any type of random number in any range. See your worksheets if you need to refresh.
- 7. Wrapper class
- 8. Know what a wrapper class is and why it is used.
 - a. Due to sometimes we need to treat a primitive type as an object
 - b. Contain some valuable constants that we can reference like:
 - i. Integer.MIN_VALUE
 - ii. Integer.MAX_VALUE
- 9. Know your order of operations!
- 10. Understand that class files are organized into packages
 - a. Java.lang is the main package where the String, System, Math, and other commonly used classes reside. We don't need to import these if we want to use them
 - b. Other classes like the Scanner class is part of the utility package and we would have to import it in order to use it: import java.util.Scanner;

Chapter 3

- 1. Know the correct syntax for if statements, else-if, nested if's
- 2. know the Boolean operators
 - a. && logical and
 - b. || logical or
 - c. ! logical not
 - d. == equality operator
 - e. != not equals to
- 3. Know DeMorgan's Law and how to distribute a ! sign.
- 4. Know the proper syntax for a while loop. Remember that you have to perform the initialization prior to the loop
 - a. a sentinel value allows the user to stop the loop
 - b. We use a while loop when the programmer doesn't know in advance how many times the loop will iterate
- 5. Know the proper syntax for a for loop.
 - a. Please understand that the increment or decrement occurs at the end of the loop cycle
 - b. We use a for loop when the programmer knows in advance how many times we want the loop to iterate
- 6. Know how to set up truth tables and the algorithm for how many scenarios you have based on the number of variables
 - a. two variables equals 4 scenarios
 - b. three variable equal 8 scenarios

7. Understand short-circuiting

- a. when the left side of the equation gives us enough information that we don't have to check the right side
- b. the left side is false in a && statement
- c. the left side is true in a | | statement
- d. Great to use to prevent a divide by zero run-time error

Know how to trap the max and min values

- e. know how to instantiate correctly
- f. know how to use the if statement to trap the values

8.

Chapter 4

- 1. Know the four steps to write a class file
 - a. class header
 - b. declare the private instance variables
 - c. write the constructors
 - d. write the other accessor and mutator methods
- 2. Know about the scope of the declared variables
 - a. local variables are declared inside a method and can only be referenced inside that method
 - b. class level variables are declared with the other instance variables and can be referenced from anywhere in the class file
- 3. Understand the concept of *encapsulation* (to protect the integrity of the instance variables)
 - a. all instance variables should be made private. If you leave off the visibility modifier, it will default to public
 - b. For the clear majority of the time, methods should be made public to provide functionality for the clients. Clients can call the public methods from a runner program.
 - c. Private methods are only used as a helper or support method that will be only called from inside the class.
- 4. Know the method header of the toString method and why it is used
 - a. It comes from the object class and so it is overridden in all class files
 - b. the header is: public String to String()
 - c. You must have a return statement in the method that returns a string
 - d. The method is called automatically when you try to print an object
 - e. If the objects class file does not have a toString method, it prints out the hexadecimal location of the data's memory address. Hexadecimal "gobbledygook"
- 5. Know the difference between the formal parameters and actual parameters of a method
 - a. formal parameters of a method are local variables
- Know that the reserved word "this" refers to the object calling the method or the instance variable of the class file.
- 7. Know the rules for constructors
 - a. They have the same name as the class
 - b. They are always public
 - c. They have no return type (not even void)
 - d. They are often overloaded meaning: the signature of the parameters are unique.
 - e. The signature is the number, type, and order of the parameters

Chapter 6

- 1. Know that arrays in Java are objects.
- 2. Know the proper way to instantiate:
 - a. int[] num = new int[10];

AP Computer Science

First Semester Study Guide

- 3. Know the proper way to use an initializer list. The portion to the left of the = is the same. To the right of the =, just list the contents between {} separated by commas.
 - a. int[] num = {3,5,2,76,32,45,12,1};
 - b. Make sure char's and string's use the proper syntax: 'F' or "tom"
- 4. The constant length is created when the array is instantiated
- 5. The for loop to use to traverse an array is:
 - a. for (int I = 0; I < array.length;i++)
- 6. Know that when you instantiate an array the value are set to:
 - a. Zero for doubles and ints
 - b. False for Boolean
 - c. Null for objects
- 7. Know the three line swap algorithm
 - a. int temp = nums[0];
 - b. nums[0] = nums[5]
 - c. nums[5] = temp;
- 8. Know the algorithm for reversing an array
 - a. for (int i = 0; i < array length/2; i++)
 - b. {
 - c. int temp = array[i];
 - d. array[i] = array[array.length-1-i];
 - e. array[array.length-1-i] = temp;
 - f. }