Name : ____________________________________

The following class is used to test board games. Many board games have a start and an end and some type of path or track you have to follow. In order to win the game, the players have to get from the start to the end and usually the faster the better. We will only be concerned with going from the start to the end. Speed is not important.
public class Board
{
 private boolean win;

public Board(int rows, int cols, String line){ //part a }

 //getStart returns a String storing the r and c of S in form "r c"

public String getStart()

{ //code not shown }

 //getEnd returns a String storing the r and c of E in form "r c"

public String getEnd()

{ //code not shown }
private boolean check(int r, int c)

{ //part b }
public boolean win()

{ //part c }

}

A.
Write the Board constructor method. The Board constructor will receive the number of rows, the number of columns, and the values to be placed in the board.

line will store a series of characters.

If the Board call new Board(3,3, "W-S-----E") was made, then the result would be a board of size 3 X 3 that looked as follows ::

	W
	-
	S

	-
	-
	-

	-
	-
	E

W represents a wall, - represents a path, S represents the starting location, and E represents the exit.

Write the Board constructor below.
public Board(int rows, int cols, String line)

{

B.
Write the Board method check(). check() will use recursion to check to see if this board is winnable or not winnable. Check() will always start checking at the S. check() is always passed in the coordinates of S. check() will look to see if an unobstructed path exists from S to X.
A winnable board only occurs if a path of -s leads from S to the E. -s can only be connected up, down, left, and right. You cannot have diagonal connections.

 In writing check(), you may call any of the public methods of the Board class, including what you wrote in part A. Assume that all of these methods work as specified regardless what you wrote in part A.

// check returns true if a path of –s exist from S to E
// check returns false if a path of –s does not exist from S to E

public boolean check(int r, int c)

{

C.
Write the Board method win(). win()will determine if the current board contains a legitimate path from S to E.
 In writing win(), you may call any of the public or private methods of the Board class, including what you wrote in part A and B. Assume that all of these methods work as specified regardless what you wrote in parts A and B.

public boolean win()

{

Basic recursive algorithm for check()

if R and C are in bounds and spot is !W

 if you are at E

	set win

 else

	mark spot as checked

	recur up

	recur down

	recur left

	recur right

Example board 2

- W - E�- W W -�- W W -

S - - W�

not winnable

Example board 1

- W - W - - -�- W - W - W W

S - - - - - E

W - - - W - W

W - - W - - -game is winnable

© A+ Computer Science – Recursion Test – www.apluscompsci.com

